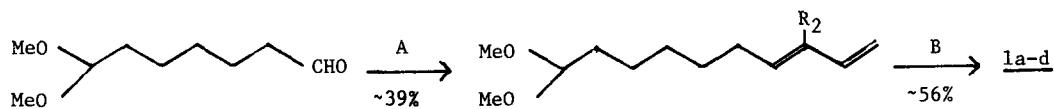

MEDIUM RING SYNTHESIS VIA INTRAMOLECULAR DIELS-ALDER
REACTION. 1. THE SYNTHESIS OF BICYCLO[6.4.0]DODECANE SYSTEMS

Kunio Sakan[†] and Douglas A. Smith^{*1}
Department of Chemistry, Carnegie-Mellon University, Pittsburgh, PA 15213

Abstract. The regio- and stereocontrolled synthesis of *cis*-fused bicyclo[6.4.0]dodecane ring systems by the application of the Lewis acid-catalyzed intramolecular Diels-Alder reaction is described.

The synthesis of medium rings, particularly cyclooctanes, from acyclic precursors continues to be a challenging problem in organic synthesis.² We wish to report that the Lewis acid-catalyzed intramolecular Diels-Alder reaction³ is extremely useful for cyclooctane synthesis and demonstrate its utility in regio- and stereocontrolled construction of *cis*-fused bicyclo[6.4.0]dodecane systems 2 from simple acyclic precursors 1 (Scheme 1).⁴

SCHEME 1


a : R₁=R₂=H, b : R₁=H, R₂=Me, c : R₁=Me, R₂=H, d : R₁=R₂=Me

The four substrates 1a-d, readily available from 7,7-dimethoxyheptanal⁶ (Scheme 2), were employed and their uncatalyzed thermal reactions ($\sim 1.2 \times 10^{-2}$ M in toluene/140°C/degassed sealed tube) were first studied. The results were disappointing in that polymer formation predominated in all cases.⁷

However, in the presence of Me₂AlCl as catalyst, 1a was smoothly converted at room temperature to a single isolable product 2a⁵ in 69% yield. Similarly, 1b-d were also transformed, in each case, to a readily separable mixture of two products 2b-d (major) and 3b-d (minor), respectively (Table 1).⁵ Upon base treatment (NaOMe/MeOH/25°C) 2a underwent facile epimerization at C-1, providing a new compound 3a⁵ (equilibrium ratio: 2a/3a = 1/32 by isolation). Likewise, 2b and 3b were interconverted under the basic conditions (2b/3b = 1/1 by isolation). It should be noted, however, that all four pairs of compounds (2a-d and 3a-d) thus obtained from 1a-d were found to be configurationally stable under the Lewis acid conditions employed.⁸

Structurally, mass^{5b} and ¹³C NMR spectra clearly indicate that all products obtained

[†] Deceased 12 January, 1984.

SCHEME 2^a

^aKey. (A): $\phi_3\text{PCHCO}_2\text{Me}$ or $\phi_3\text{PC(Me)CO}_2\text{Me}/\text{PhH}/25^\circ\text{C}$; $\text{Dibal}/\text{CH}_2\text{Cl}_2/-78^\circ\text{C}$; $\text{PDC}/\text{DMF}/0^\circ\text{C}$; $\text{Ph}_3\text{PCH}_2/\text{THF}/0^\circ\text{C}$. (B): $\text{PyTsOH}/(\text{CH}_3)_2\text{CO}, \text{H}_2\text{O}/\text{Reflux}$; CH_2CHMgBr or $\text{CH}_2\text{C(Me)MgBr}/\text{THF}/-78^\circ\text{C}$; $\text{TFAA}/\text{DMSO}/\text{CH}_2\text{Cl}_2/-50^\circ\text{C}$, $\text{Et}_3\text{N}/-50^\circ\text{C}$.

from 1a-d are monomeric cycloaddition products (Table 2). That these products have the bicyclo[6.4.0]dodecane framework (as in 2 and 3), not the alternative structure 4, was indicated by the ^1H NMR spectra (obtained at either 300 or 600 MHz) which showed the presence of the partial structure $=\text{C}(10)\text{H}-\text{C}(11)\text{H}_2-\text{C}(12)\text{H}_2-$ in all cases.⁹ Additionally, for those compounds lacking angular substitution (i.e., $\text{R}_1 = \text{H}$), vicinal coupling between H_1 and H_8 was observed ($\text{J}_{1,8} = \underline{2a}$, 4.9 Hz; 3a, 10.2 Hz; 2b, 4.2 Hz; 3b, 10.4 Hz).^{9b} These observations confirm that each pair of compounds obtained from 1 consists of the stereoisomers 2 and 3 in all four cases a-d.

Stereochemically, the relative magnitude of the $\text{J}_{1,8}$ values suggests that 2a-b and 3a-b are cis and trans, respectively. The validity of such a relationship in the bicyclo[6.4.0]-dodecane system was confirmed by chemically correlating 2a and 3a with authentic samples

TABLE 1. THE RESULTS OF THE CATALYZED REACTIONS

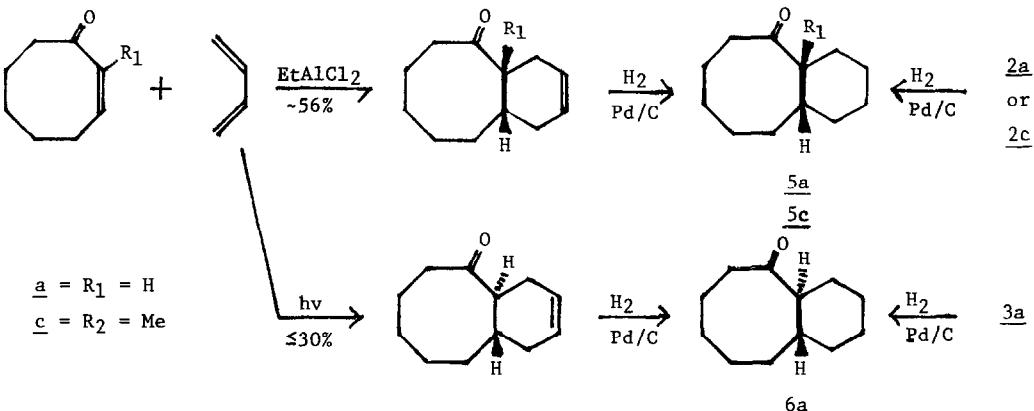
Substrate	Reaction Temperature	Product Ratio ^a <u>2</u> : <u>3</u>	Isolated Yield (<u>2</u> + <u>3</u>)
<u>1a</u>	25°	$\sim 100 : \sim 0$	69
<u>1b</u>	25°	89 : 11	62
<u>1c</u>	55°	83 : 17	74
<u>1d</u>	50°	74 : 26	69

^adetermined by isolation

cis-5a and trans-6a, prepared via the intermolecular Diels-Alder reaction between cyclooct-2-en-1-one and butadiene under catalyzed^{8a} and photochemical¹⁰ conditions, respectively (Scheme 3). Similarly, 2c was correlated with authentic cis-5c (Scheme 3) and hence 3c must be trans. Thus, the relative stereochemistry of the three pairs of compounds (2a-c and 3a-c) is solidly confirmed.

The stereochemistry of the remaining pair 2d and 3d was assigned as cis and trans, respectively, based on the ^{13}C chemical shift difference between the cis (2a-d) and trans (3a-d) series of compounds (Table 2). For example, in all cases C-2 is relatively shielded by 2.1 - 3.1 ppm in cis versus the corresponding trans isomer, and, when the angular methyl group is present ($\text{R}_1 = \text{Me}$), the methyl carbon atom is significantly deshielded by 7.2 - 8.3 ppm in cis versus trans (2c vs. 3c and 2d vs. 3d). These and other obvious trends¹¹ observed clearly justify the stereochemical assignment of 2d and 3d, and hence confirm that the predominant product formed under the catalyzed conditions has, in each case studied (a-d), cis-fused bicyclo[6.4.0]dodecane structure 2.¹²

TABLE 2: ^{13}C MR SPECTRA DATA^a OF THE PRODUCTS 2 AND 3


carbon ^b	<u>2a</u>	<u>3a</u>	<u>2b</u>	<u>3b</u>	<u>2c</u>	<u>3c</u>	<u>2d</u>	<u>3d</u>
1	51.6(d)	51.2(d)	52.5(d)	53.0(d)	48.5(s)	48.9(s)	49.5(s)	49.6(s)
2	216.7(s)	219.5(s)	216.9(s)	220.0(s)	218.5(s)	220.9(s)	219.0(s)	221.1(s)
8	34.23(d)	40.1(d)	38.0(d)	42.0(d)	41.4(d)	36.4(d)	44.7(d)	39.4(d)
9	131.9(d)	131.8(d)	137.4(s)	135.8(s)	130.6(d)	131.1(d)	136.0(s)	134.7(s)
10	126.23(d)	125.9(d)	121.3(d)	122.7(d)	124.5(d)	125.2(d)	119.5(d)	121.5(d)
Me(1) ^c					20.9(q)	12.6(q)	20.7(q) ^d	13.5(q) ^d
Me(9) ^c			22.2(q)	21.7(q)			22.9(q) ^d	23.8(q) ^d

(a) Spectra were taken in CDCl_3 at 20.12 MHz. Chemical shifts are in ppm relative to TMS. Multiplicity is shown in parenthesis. (b) Only those carbons which are firmly assignable^{8a} are listed.^{9b} (c) Me(1) and Me(9) refer to the angular and allylic methyl carbon atoms, respectively. (d) The assignment was confirmed by selective proton decoupling experiments (see Footnote 4b for relevant protons).

In conclusion, we have demonstrated that the catalyzed intramolecular Diels-Alder reaction can be used to efficiently construct, with high regio- and stereoselectivity, vicinally fused cyclooctanes from readily available acyclic precursors.^{4,13} The application of this methodology to the synthesis of higher medium ring systems and natural products (e.g., ophiobolins) will be reported in due course.

Acknowledgement. The 300 and 600 MHz spectra were obtained by using facilities supported by the National Institutes of Health (GM27390, RR00272). We are indebted to Dr. A. A. Bothmer-By for his help in obtaining the 600 MHz spectra and IBM for a fellowship to D.A.S.

SCHEME 3

REFERENCES AND FOOTNOTES

1. IBM predoctoral research fellowship holder (1983-1984).
2. For example, see (a) G. Illuminati and L. Mandolini, Acc. Chem. Res. (1981), 14, 95; (b) R. L. Danheiser, S. K. Gee and H. Sand, J. Am. Chem. Soc. (1982), 104, 7670; (c) R. C. Gadwood and R. M. Lett, J. Org. Chem. (1982), 47, 2268 and reference cited therein; (d) L. A. Paquette, D. R. Andrews and J. P. Springer, J. Org. Chem. (1983), 48, 1147 and references cited therein.
3. For reviews, see (a) K. N. Houk, Acc. Chem. Res. (1975), 8, 361; (b) W. Oppolzer, Angew. Chem. Int. Ed. Engl. (1977), 16, 10-23; (c) G. Brieger and J. N. Bennett, Chem. Res. (1980), 80, 63-97; (d) W. R. Roush, H. R. Gillis and A. I. Ko, J. Am. Chem. Soc. (1982), 104, 2269 and references cited therein.
4. To our knowledge, the general utility of the intramolecular Diels-Alder reaction in the synthesis of bicyclo[6.4.0]dodecane systems has not been reported. However, two special cases are known: (a) K. Sakan and B. M. Craven, J. Am. Chem. Soc. (1983), 105, 3732; (b) K. N. Houk, (University of Pittsburgh), private communication.
5. (a) All new compounds reported were homogeneous by TLC and gave satisfactory IR, NMR and MASS spectra.
(b) Selected data [MASS (m/e), IR (film) and ^1H NMR (CDCl_3)] of the cycloaddition products follow.

<u>2a</u> :	MASS $178(\text{M}^+)$, IR 1695 cm^{-1} , NMR δ 5.61 (m, 2H);
<u>3a</u> :	MASS $178(\text{M}^+)$, IR 1698 cm^{-1} , NMR δ 5.65 (m, 1H), 5.52 (m, 1H);
<u>2b</u> :	MASS $192(\text{M}^+)$, IR 1703 cm^{-1} , NMR δ 5.32 (m, 1H), 1.72 (s, 3H);
<u>3b</u> :	MASS $192(\text{M}^+)$, IR 1699 cm^{-1} , NMR δ 5.45 (m, 1H), 1.67 (s, 3H);
<u>2c</u> :	MASS $192(\text{M}^+)$, IR 1704 cm^{-1} , NMR δ 5.57 (m, 1H), 5.49 (m, 1H), 1.05 (s, 3H);
<u>3c</u> :	MASS $192(\text{M}^+)$, IR 1694 cm^{-1} , NMR δ 5.63 (m, 1H), 5.31 (m, 1H), 0.93 (s, 3H);
<u>2d</u> :	MASS $206(\text{M}^+)$, IR 1697 cm^{-1} , NMR δ 5.24 (m, 1H), 1.70 (s, 3H), 1.02 (s, 3H);
<u>3d</u> :	MASS $206(\text{M}^+)$, IR 1694 cm^{-1} , NMR δ 5.44 (m, 1H), 1.67 (s, 3H), 0.98 (s, 3H).
6. This substance is readily available from cycloheptene by Schreiber's method: S. L. Schreiber, R. E. Claus and J. Reagan, Tetrahedron Lett. (1982), 23, 3867.
7. The substrates 1a and 1b gave, in low yields, a mixture of two monomeric cyloaddition products, 2a and 3a (1.75 : 1 by gc), and 2b and 3b (1 : 1.33 by gc), respectively, while 1c and 1d did not give such monomeric products. The products 2a-b and 3a-b were identical to those obtained via the catalyzed reactions of 1a-b (see text). The monomer yields were not improved by the addition of radical scavengers.
8. However, facile Lewis acid-catalyzed *cis-trans* isomerization was reported for the hydrindanone, octalone, decalone and hydrobenzosuberone systems when angular substitution was lacking. (a) F. Fringuelli, F. Pizzo, A. Taticchi, T. D. J. Halls and E. Wenkert, J. Org. Chem. (1982), 47, 5056 and references cited therein.
9. (a) The complex coupling pattern of the C-11 methylene protons under H_{10} decoupled conditions clearly suggested the presence of an additional methylene group vicinal to the C-11 protons.
(b) The detailed analysis of the NMR spectra will be reported later.
10. (a) P. E. Eaton and K. Lin, J. Am. Chem. Soc. (1964), 86, 2087. For a recent example, see (b) H. Shinozaki, S. Arai, and M. Tada, Bull. Chem. Soc. Japan (1976), 49, 821.
11. An additional clear trend is observed in the C-8 chemical shift which is sensitive to both the presence (or absence) of the angular methyl group and the ring juncture stereochemistry. Upon introduction of the angular substituent C-8 was considerably deshielded (by 6.7 - 7.1 ppm) in the *cis*-series (2a vs. 2c, and 2b vs. 2d), but shielded (by 2.7 - 3.8 ppm) in the *trans*-series (3a vs. 3c, and 3b vs. 3d). When angular substitution is lacking, C-8 is shielded (by 4.1 - 5.9 ppm) in *cis* relative to *trans* isomer (2a vs. 3a, and 2b vs. 3b). In contrast, when the substitution is present, the opposite trend (by 5.0 - 5.3 ppm) is apparent (2c vs. 3c, and 2d vs. 3d).
12. The observed *cis*-selectivity might be attributable to the enhanced secondary orbital interaction under the catalyzed conditions. See Ref. 2a and (a) D. Ginsburg, Tett. (1983), 39, 2095.
13. The application of the catalyzed reaction to the synthesis of bicyclo [5.3.1] undecane systems has recently been reported. K. J. Shea and J. W. Gilman, Tetrahedron Lett. (1983), 24, 657.